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QUESTION 1. Solve the following system over Z8

2x+ 3y = 0

x+ y = 3

sketch: One way eliminate x. Multiply the second equation with the additive inverse of 2, note 6 = -2 is
the additive inverse of 2 in Z8. Hence

(1)2x+ 3y = 0

(2)6x+ 6y = 2

Now add (1) to (2), we get 9y = 2. Now the multiplicative inverse of 9 = 9−1 = 9. Hence y = 2. Substitute
y = 2 in (1), we get x = 1.

QUESTION 2. Find the inverse of A if possible over Z19

A =

[
2 17
1 1

]

Sketch |A| = 2 + −17 = 2 + 2 = 4. Hence the inverse of A is A−1 = 4−1

[
1 2
18 2

]
= 5

[
1 2

18 2

]
=[

5 10
14 10

]
=

QUESTION 3. Let A = {1, 2, 3, 4} and R = (P (A),+, .), where + and . as explained in the class.
1) Convince me that R does not have a subring with 6 elements. [short answer : a few lines!, by staring]

Sketch: Let D be a subring of R. Since (R, +) is a group of order 16 and (D, +) is a subgroup of (R,+), the
order of every subgroup must be a factor of 16. Since 6 is not a factor of 16, R does not have a subring with
6 elements.

2) Find the inverse of M where

M =

[
{1, 2} {3, 4}
{1, 3, 4} {1, 2, 4}

]
Sketch: |M | = A ∈ U(P (A))

Hence M−1 = AM−1

[
{1, 2, 4} {3, 4}
{1, 3, 4} {1, 2}

]
=

[
{1, 2, 4} {3, 4}
{1, 3, 4} {1, 2}

]
3) Solve for x, y ∈ P (A) (if possible), where

{1, 2}x+ {3, 4}y = {2, 4}

{1, 3, 4}x+ {1, 2, 4}y = {1, 2}

Sketch Note that M is the coefficient matrix of the system. Hence[
x

y

]
= M−1

[
{2, 4}
{1, 2}

]
=

[
{2, 4}
{1, 2, 4}

]

QUESTION 4. 1) Let I = span{6, 15} over Z, i.e., I = (4, 6)Z. We know every ideal of Z is of the form nZ for
some integer n. Hence I = nZ, find n [Hint: gcd(a, b) = ca+ db for some c, d ∈ Z]

Sketch: Since gcd(6, 15) = 3 = 6a+ 15b for some a, b ∈ R, we conclude that 3 ∈ I . Thus span{3} ⊂ I .
It is clear that 6 = 3X2 ∈ span{3} and 15 = 3X5 ∈ span3. Since span{3} is an ideal of Z and 6 ∈ Span{3}
and 15 ∈ Span{3}, we conclude that 6c+ 15d ∈ span{3} for every c, d ∈ Z. Thus span{3} = Span{6, 9}
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2) Let I,K be ideals of a commutative ring R. Prove I ∩K is an ideal of R. Assume neither I ⊆ K nor K ⊆ I .
Prove that I ∪K is not an ideal of R.

sketch : Let x, y ∈ I ∩K. Then x, y ∈ I and x, y ∈ K. Hence x−y ∈ I and x−y ∈ K. Thus x−y ∈ I ∩K.
Let a ∈ I ∩K and r ∈ R. Then ra ∈ I and ra ∈ K. Hence ra ∈ I ∩K. Thus I ∩K is an ideal of R.

By hypothesis, there is an x ∈ I \K and y ∈ K \ I . Assume I ∪K is an ideal. Hence x− y ∈ I ∪K. Thus
x− y ∈ I or x− y ∈ K. If x− y ∈ I , then y ∈ I , a contradiction. If x− y ∈ K, then x ∈ K, a contradiction.

3) Let I = span{6} = 6Z and K = span{15} = 15Z (note I , K are ideals of Z). Then I ∩K = nZ for some
integer n. Find n.

Sketch: Note that 6 | n and 15 | n. Hence n = LCM [6, 15] = 30
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install
Text Box
p(x), q(x) in Q[x] 

install
Pencil

install
Text Box
number 6
By staring, it is clear that  x^5Q[x] = I (intersection ) K . So  if x^5Q[x] is a principal ideal of   R, then
I (intersection )K = x^5R.
0.5 x^5 is in  I (Intersection) K, but   0.5x^5 is not in  x^5R  (since  1/2  is not in R) 
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QUESTION 1. (Freshman dream): Let R be a commutative ring with 1 6= 0 such that char(R) = p a prime
number. Let x, y ∈ R. Prove that (x + y)p

n

= xpn

+ yp
n

for every n ≥ 1 [Hint: prove it directly or use math
induction]

Proof. We use Math. Induction
i) Let n = 1. Then (x+ y)p = xp + pcp−1x

p−1y + · · ·+ pxyp−1 + yp (by the binomial expansion theorem,
note that pcp−1 = pcp−2 = · · · = p = 0 in R)

ii) Assume that (x+ y)p
n

= xpn

+ yp
n for some n ≥ 1

iii) We prove it for n+ 1. Hence by (ii) and (i), we have

(x+ y)p
n+1

=
(
(x+ y)p

n
)p

= (xpn

+ yp
n

)p = xpn+1
+ yp

n+1

QUESTION 2. Show that Nil(R) ⊆ P for every prime ideal P of a commutative ring R.[Hint: not difficult, but
important fact]

Proof. Let P be a prime ideal of R. Let x ∈ Nil(R). Hence xn = 0 ∈ P for some integer n ≥. Let m be
the least positive integer such that xm ∈ P . Thus xm−1x ∈ P . Since P is prime, we have xm−1 ∈ P or x ∈ P .
Since m is the least positive integer such that xm ∈ P , we conclude that xm−1 6∈ P . Hence x ∈ P .

QUESTION 3. (a)Let K = Q(
√

5i) = {a + b
√

5i | a, b ∈ Q} (i =
√
−1). Prove that F is a field [: Hint it is

straight forward to see that K is a commutative ring with 1, Do not show that. Just show that if x = a+b
√

5i ∈ K∗,
then x−1 ∈ K. Note that then x−1 = 1/x = a

a2+5b2 − b
√

5i
a2+5b2 ]

No comments, it is clear by the hint
(b) (nice) Let K as in (a) and A = Q[x] prove that A

(x2+5)A is ring-isomorphic to K. [Hint : Construct a ring
homomorphism from A ONTO K, then use the first isomorphism Theorem.]

Proof. Let T : A → K such that T (f(x)) = f(
√

5i). Let f(x), f2(x) ∈ A. Hence T (f1(x) + f2(x)) =

f1(
√

5i) + f2(
√

5i) = T (f1(x)) + T (f2(x)) and T (f1(x)f2(x)) = f1(
√

5i)f2(
√

5i) = T (f1(x))T (f2(x)). Thus
T is a ring homomorphism. We show that T is ONTO. Let y ∈ K. Then y = a + b

√
5i for some a, b ∈ Q.

Let f(x) = a + bx ∈ Q[x]. Then T (f(x)) = f(
√

5i) = a + b
√

5i = y. Hence T is ONTO. We know
Ker(T ) = {h(x) ∈ A | T (h(x)) = h(

√
5i) = 0} is an ideal of A. Since A is a PID, Ker(T ) = d(x)A for some

monic polynomial d(x) such that T (d(x)) = d(
√

5i)) = 0, Since x2 + 5 is the smallest such polynomial in
Q[x]. We conclude that Ker(T ) = (x2 + 5)A. Thus we know A/Ker(T ) ∼= Range(T ) = K (since T is onto).
Thus A/(x2 + 5)A ∼= K.

(c)Let R be a PID. Prove that every prime ideal of R is maximal. [hint: Let I be a prime idea of R, then we
know I ⊆M for some maximal ideal M of R. Show M ⊆ I , note that R is a PID]

Proof. Let P be a prime ideal of R. Since R is a PID, we have P = pR for some prime element p of R.
Hence P = pR ⊆ M for some maximal ideal M of R. Since R is a PID, M = yR for some nonunit y of R.
Thus p ∈ yR. Hence p = yw for some w ∈ R. Since every prime element of an integral domain is irreducible
and p = yw, we conclude w ∈ U(R). Thus y = w−1p. Hence y ∈ pR. Since y ∈ pR and p ∈ yR, we conclude
that P = M is a maximal ideal of R.

(d) Let R be a PID. Prove that every irreducible element in R is prime [ use (c). Let x be irreducible, then xR
lives inside a maximal ideal M of R. Note that, in general, for any ring R, if y in R is prime, then uy is prime for
every u in U(R)]

Proof. Let x be an irreducible element of R. Then xR ⊆ M for some maximal ideal M of R. Since R is
a PID and every maximal ideal of R is prime, M = pR for some prime element p of R. Hence x = pw for
some w ∈ R. Since x is irreducible and p is not a unit of R, we conclude that w ∈ U(R). Hence x is a prime
element of R,
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FACTS (know), add to your common knowledge dictionary
Let R be a commutative ring with 1 and f(x) ∈ R[x]. Then
1) f(x) ∈ Z(R[x]) if and only if there is a w ∈ Z(R)∗ such that wf(x) = 0 [nice result, the proof is technical

, you need to keep tracking of the coefficients of f(x). So just know it ]
2) f(x) = anx

n + · · ·+ a1x+ b ∈ U(R[x]) if and only if a1, ..., an ∈ Nil(R) and b ∈ U(R)[ this is not hard to
prove, it is easy to see that anxn + · · ·+ a1x is a nilpotent and by HW 2 nilpotent + unit = unit]

QUESTION 4. Use the fact above
a) Convince me that f(x) = 3x5 + 2x+ 4 6∈ Z(Z6[x]) [ Note 2, 3, 4 ∈ Z(Z6)∗]
By the FACT, There is no a ∈ Z(R)∗ such that af(x) = 0
b) Convince me that f(x) = 10x2023 + 5x3 + 10 ∈ Z(Z15[x]).
since 3f(x) = 0, by the FACT, we are done.
c) Give me a polynomial of degree 1963, say h(x), such that h(x)(4x9 + 2x+ 6) = 0 in Z10[x].
by (b), let f(x) = 3x1963 + 6x63 + 9
d) Convince me that f(x) = 6x2 + 3x+ 5 6∈ U(Z12[x])
Since 3 6∈ Nil(Z12), by the FACT, f(x) is not nilpotent.
e) Convince me 2x4 + 6x+ 11 ∈ U(Z16[x])
Since 2, 6 ∈ Nil(Z16) and 11 ∈ U(Z16), by the fact, we are done.
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QUESTION 1. Let F be a finite field with pn elements where n ≥ 2. Prove that (F,+) is never a cyclic group;
note that some authors write GF (pn) (you read it, Galois field with pn elements) to mean a finite field with pn

elements. [Hint: Note that F is a Zp-module, use class notes]

Proof. By class notes F is a Zp-module and (F,+) ∼= A = (Zp,+)X · · · × (Zp,+) (n ≥ 2 times). By
staring, each nonzero element in A is of order p (under addition mod p). Hence A has no elements of order
pn. Since (F,+) ∼= A, F has no elements of order pn. Thus (F,+) is not cyclic.

Another proof. We know char(F ) = p, i.e., p.1F = 1F + · · · + 1F (p times) = 0. Let a ∈ F ∗. Then
p.a = a + · · · + a (p times) = (p.1F )a = 0.a = 0. Thus the order of a under addition is p. Hence F has no
elements of order pn (n ≥ 2). Hence (F,+) is not cyclic.

QUESTION 2. (nice and applicable)

a) Let D be an integral domain and f(x) be a monic polynomial of degree 2 or 3 in D[x]. Prove that f(x)) is
irreducible in D[x] if and only if there is no a ∈ D such that f(a) = 0 (i.e., if and only if f(x) has no roots in D)

Proof. Assume f(x) is irreducible of degree n (degree 2 or 3 not needed for this direction), and a ∈ D.
Then f(x) 6= (x − a)h(x) for some h(x) ∈ D[x], where deg(h) < deg(f). Thus f(a) 6= 0 for every a ∈ D.
For the converse, assume degree(f) = 2. Since f(a) 6= 0 for every a ∈ D, we conclude that for every b, c ∈ D,
f(x) 6= (x − b)(x − c). Hence f(x) is irreducible. Assume degree(f) = 3. Since f(a) 6= 0 for every a ∈ D,
we conclude that f(x) 6= (x − a)h(x) for every a ∈ D, and h(x) ∈ D[x], where deg(h) = 2. Hence f(x) is
irreducible.

Note that degree 2 or 3 is needed for the converse. For example, if f(x) is of degree 4 and f(a) 6= 0
for every a ∈ D, then f(x) need not be irreducible. It is possible that f(x) = h1(x)h2(x), where h1, h2 are
irreducible of degree 2.

b) Prove that f(x) = x3 + x2 + 2x+ 1 is irreducible in Z3[x].
Since deg(f) = 3 and f(a) 6= 0 for every a ∈ Z3, by (a) we conclude that f(x) is irreducible.

c) Write f(x) = x16 + 1 as product of irreducible elements in D = Z2[x] [ Hint: Make use of the freshman
dream]

Since char(D) = 2, by the freshman dream result, x16 + 1 = x24
+ 1 = (x+ 1)24

= (x+ 1)× · · · × (x+ 1)
(16 times).

QUESTION 3. Let F = GF (528) and L = AutZ5(F ). Recall that if H is a subgroup of L, then we say H fixes the
subfield E of F if for each element in H (read again, for EACH element in H), say h(x) ∈ H , we have h(e) = e
for each e ∈ E.

Write down all subgroups of L, and for each subgroup of L find the unique fixed subfield of F .

Let D = {1, 2, 4, 7, 14, 28} be the set of all factors of 28. By class notes, for each m ∈ D, F has one and
only one subfield Em, where |Em| = 5m.

We know |AutZ5(F )| = 28 and (AutZ5(F ), o) is a cyclic group generated by f1 : F → F such that
f1(a) = a5.

(i) For m = 1, AutZ5(F ) =< f1 : F → F, f1(a) = a5 > and it fixed the subfield Z5, note |AutZ5(F )| = 28.

(ii) For m = 2, AutE2(F ) =< f2 : F → F, f2(a) = a52
> and it fixed the subfield E2 = {a ∈ F | a52

= a},
note |AutE2(F )| = 14.

(iii) For m = 4, AutE4(F ) =< f4 : F → F, f4(a) = a54
> and it fixed the subfield E4 = {a ∈ F | a54

= a},
note |AutE4(F )| = 7

(iv) For m = 7, AutE7(F ) =< f7 : F → F, f7(a) = a57
> and it fixed the subfield E7 = {a ∈ F | a57

= a},
note |AutE7(F )| = 4
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(v) For m = 14, AutE14(F ) =< f14 : F → F, f14(a) = a514
> and it fixed the subfield E14 = {a ∈ F | a514

=
a}, note |AutE14(F )| = 2

(vi) For m = 28, AutE28(F ) = AutF (F ) =< f28 : F → F, f28(a) = a528
= a > and it fixed the subfield F ,

note |AutE28(F )| = 1

QUESTION 4. Let R be a commutative ring with 1 6= 0 and S = {P |P is a prime ideal ofR}. Prove that
Nil(R) =

√
R; recall that

√
R = ∩P∈S P [Hint: We know that Nil(R) ⊆ P for every P ∈ S and use the result

that we proved: If D is a multiplicatively closed set and I is a proper ideal of R such that D ∩ I = ∅, then there is
a prime ideal W of R such that I ⊆W and W ∩D = ∅ ]

Proof. Since Nil(R) ⊆ P for every prime ideal P of R, it is clear that Nil(R) ⊆
√
R = ∩P∈S P . We show

that ∩P∈S P ⊆ Nil(R). Deny. Then there is an x ∈ ∩P∈S P \Nil(R). Thus xm 6∈ Nil(R) for every integer
m ≥ 1.

Thus D = {1, x, x2, ..., xm, · · · } is a multiplicatively closed set of R such that D ∩ Nil(R) = ∅. Hence,
by class result, there is a prime ideal W of R such that Nil(R) ⊆ W and W ∩ D = ∅. Thus xm 6∈ W for
every integer m ≥ 1. In particular, x 6∈ W . Since W is a prime ideal of R and x 6∈ W , we conclude that
x 6∈
√
R = ∩P∈S P , a contradiction. Thus ∩P∈S P ⊆ Nil(R). Hence

√
R = ∩P∈S P = Nil(R).
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